Comprehensive assessment of feedlot health interventions using outcomes research in a sustainability context

Background

— Stakeholders are **increasingly** interested in **sustainability** of food production systems

- Sustainability is a balance between environmental responsibility, economic viability, and social acceptability
- Stakeholders need to quantify the value of interventions or health management options to enable more informed decisions
- No standard metric(s) exist to compare sustainability of health or management strategies in a production system

Objective

Evaluate different antimicrobial use strategies to demonstrate approaches to comprehensively estimate value and assess sustainability

Conclusions

An outcomes research approach may provide a framework to quantify values for comprehensive assessments of animal health and management strategies in a sustainability context

Related Paper

Comprehensive assessment

Need to consider the "Trade-offs" of sustainability comprehensively

Quantification

As stakeholders increase sustainability terms/goals, the need for an ability to measure change and impacts increases

Value

There are many ways to determine value, and sustainability is another important aspect for stakeholders to consider

Taylor McAtee¹, David Renter¹, Lucas Horton¹, Nick Betts², Merri Day³, Ted Schroeder³, Brandon Depenbusch⁴

- ¹Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS ²Elanco Animal Health, Greenfield, IN
- ³Department of Agricultural Economics, Kansas State University, Manhattan, KS ⁴Innovative Livestock Services, Inc., Great Bend, KS, [Current: Irsik and Doll Feed Services, Inc., Cimarron, KS]

e emissions	PT	META	SEM	P-val
feedlot calf footprint, kg CO ₂ e				
animal enrolled	5,859.6	5,862.4	21.24	0.55
lot finishing footprint, kg CO ₂ e				
llot operations, per animal enrolled	981.0	1,005.6	16.73	0.06
ure, per animal enrolled	402.5	413.0	6.81	0.09
ric methane, per animal enrolled	399.6	410.4	6.52	0.06
l footprint, kg CO ₂ e				
animal enrolled	7,642.6	7,691.4	33.14	0.08
kg final BW	13.66	13.38	0.138	0.09
kg HCW	21.20	20.74	0.245	0.10

e	
m	
oturne	
eturns	
	1
P-value	
0.54	
0.06	
0 24	
< 0.01	
0.07	
0.12	
0.68	
0.71	