

Assessment of Novel Semen Evaluation Technologies Between Two Breeds of Yearling Beef Bulls

Ashley R. Hartman¹, I. E. Batey¹, Karol E. Fike¹ and David M. Grieger¹

¹Dept. Animal Sciences & Industry, Kansas State University, Manhattan, KS

Introduction

- Current semen evaluation techniques include evaluation of motility and morphology, and although these are insightful, they are highly subjective and not always a definitive test of fertility.
- New fertility markers and technologies have been • identified that provide an objective analysis of spermatozoa:
 - Flow cytometry a method that aids in the detection of fertility markers such as reactive oxygen species (ROS) and the effects they have on characteristics of spermatozoa
 - Between-breed differences in motility and morphology have been observed, but differences in fertility markers have yet to be investigated.

Sperm quality assessments on ejaculates from Angus and Charolais breeds of yearling bulls meeting BSE threshold requirements

Results

	Least square	Least squares mean ± Standard error of mean		
FACTOR	Angus	Charolais	P-value of	
	n=23	n=23	factor	
Bull age, days	402.9 ± 2.36	403.3 ± 2.36	0.90	
SEMEN CHARACTERISTICS				
Technician progressive motility ¹ (%)	43.7 ± 1.69	47.39 ± 1.69	0.26	
iSperm progressive motility ² (%)	50.1 ± 2.26	47.8 ± 3.18	0.66	
iSperm gross motility ² (%)	71.6 ± 2.78	70.5 ± 2.78	0.82	
Cells live and viable ³ (%)	42.3 ± 3.95	43.6 ± 3.95	0.83	
Cells live with intact acrosome ⁴ (%)	41.5 ± 3.40	42.6 ± 3.40	0.83	
Cells viable with positive ROS ⁵ (%)	29.1 ± 3.52	28.5 ± 3.52	0.92	
Active mitochondrial potential ⁶ (%)	17.6 ± 3.35	31.1±3.35	0.10	

The iSperm is a portable computerized semen analysis device that measures motility and concentration.

Objective

- During yearling bull breeding soundness exams (BSEs) evaluate:
 - **Correlations of fertility markers**
 - **Breed comparisons**
 - Validate use of the iSperm for on farm use

Experimental Procedures

- Ejaculates collected via electroejaculation on one of three consecutive days from Angus and Charolais yearling bulls (403 ± 11 d of age; n=46) as part of a BSE

¹Percentage of spermatozoa from ejaculate analyzed by a single technician for progressive motility; ²Progressive and gross motility of each ejaculate were analyzed using the iSperm software and manufacturer recommendations; ³Live and viable cells; ⁴Live with intact cell membrane and acrosome; ⁵Live with a positive ROS status; ⁶Polarized active mitochondrial membranes

Pearson's correlation coefficients of technician progressive motility assessment and iSperm motility assessment

	iSperm progressive motility ² (%)	iSperm gross motility ² (%)		
	r (P-value)			
Technician progressive motility ¹ (%)	0.39 (<0.001)	0.30 (<0.001)		
¹ Percentage of spermatozoa from ejaculate analyzed by a single technician for progressive motility; ² Progressive and				

gross motility of each ejaculate were analyzed using the iSperm software and manufacturer recommendations

Pearson's correlation coefficients of sperm attributes from ejaculates meeting **BSE threshold requirements in yearling bulls**

- One veterinarian conducted all BSEs, and ejaculates were evaluated by one technician
- Each ejaculate were assessed with the iSperm for progressive and gross motility
- Ejaculates meeting minimum thresholds for passing a BSE underwent flow cytometry evaluation
- Flow cytometry assays included live/dead, acrosome and cell membrane integrity, mitochondrial energy potential, and oxidation status
- Correlations were assessed using Pearson's correlation coefficients in SAS
- The GLIMMIX procedure of SAS was used to determine breed differences
 - Experimental unit = bull
 - Main effect = bull breed
 - Random = collection date

Conclusion

• Technician and iSperm sperm motility data were positively correlated, offering producers an on-farm

	% Live Negative ROS	% Live Positive ROS		
	Spermatozoa ¹	Spermatozoa ²		
SEMEN CHARACTERISTICS	r (P-value)			
Primary abnormalities ³ (%)	0.28 (0.06)	-0.15 (0.33)		
Secondary abnormalities ⁴ (%)	0.33 (0.02)	-0.23 (0.12)		
iSperm progressive motility ⁵ (%)	-0.27 (0.10)	0.53 (<0.001)		
Cells live with intact acrosome ⁶ (%)	-0.16 (0.29)	0.92 (<0.001)		
Cells live with disrupted acrosome ⁷ (%)	0.66 (<0.001)	-0.31 (0.04)		
Cells live and viable ⁸ (%)	-0.19 (0.22)	0.94 (<0.001)		
Active mitochondrial potential ⁹ (%)	0.03 (0.84)	0.58 (<0.001)		
¹ Percentage of spermatozoa from ejaculate live with a negative ROS status; ² Live with a positive ROS status; ³ Exhibiting				

primary abnormalities; ⁴Exhibiting secondary abnormalities; ⁵Progressive motility of each ejaculate were analyzed using the iSperm software and manufacturer recommendations; ⁶Intact cell membrane and acrosome; ⁷Intact cell membrane and disrupted acrosome; ⁸Live and viable; ⁹Polarized active mitochondrial membranes

Acknowledgments

evaluation tool. Bull breed had little influence on

sperm quality assessments, negative ROS status in

sperm appears to impair sperm health and function.

Thank you to Fink Beef Genetics for providing the bulls for this project, Sharon Tucker for performing

the semen evaluation, Blue Rapids Veterinary for performing the BSE, and the crew at Fort Keogh

Livestock & Range Research Laboratory for performing the flow cytometry analyses.